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The One-Dimensional Hubbard Model for
Large or Infinite U
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The magnetic properties of the one-dimensional Hubbard model with a hard-
core interaction on a ring (periodic boundary conditions) are investigated. At
finite temperatures it is shown to behave up to exponentially small corrections
as a pure paramagnet. An explicit expression for the ground-state degeneracies
is derived. The eigenstates of this model are used to perform a perturbational
treatment for large but finite interactions. In first order in U ! an effective
Hamiltonian for the one-dimensional Hubbard model is derived. It is the
Hamiltonian of the one-dimensional Heisenberg model with antiferromagnetic
couplings between nearest neighbor spins. An asymptotic expansion for the
ground-state energy is given. The results are valid for arbitrary densities of
clectrons.
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1. INTRODUCTION

From the

theoretical point of view one-dimensional models are often

fascinating, since in many cases it is possible to obtain exact results. This
is also true for the Hubbard model.!"’ It describes itinerant electrons on a
lattice with an on-site interaction. Whereas not too much is known about
the properties of the Hubbard model in more than one dimension, it is

solvable in

one dimension using the Bethe Ansatz. This was shown by Lieb

and Wu,”” who derived the so-called nested Bethe Ansatz equations.
Unfortunately it is difficult to solve these equations. Lieb and Wu obtained
the ground state in the thermodynamic limit for a half-filled band and the

! Institut de Physique Théorique, Ecole Polytechnique Fédérale de Lausanne, PHB-Ecublens,
CH-1015 Lausanne, Switzerland.

509

0022-4715/91/0200-0509506.50/0 © 1991 Plenum Publishing Corporation



510 Mielke

excitations may be classified in this case as well (see ref.3 and the
references therein). Irrespective of the density of the electrons, the theorem
of Lieb and Mattis'® tells us that the ground state is a singlet. This result
was recently extended to finite temperatures by Aizenman and Lieb" in
the sense that the magnetization is always less than the pure paramagnetic
value. Further, Shiba‘® and Carmelo and Baeriswyl!” used the thermo-
dynamic limit of the nested Bethe Ansatz equations to obtain expansions
for several quantities in the limit of strong interaction. These results are
valid for all densities and we will come back to them later.

In the special case of a hard-core interaction the theorem of Lieb and
Mattis is not valid. Instead, Aizenman and Lieb'®’ showed that in the case
of a ring (periodic boundary conditions) and for an odd number of
particles there is one among the degenerate ground states for which the
total spin takes the maximal value. For all finitc temperatures the
magnetization exceeds the pure paramagnetic value. There is a tendency
toward a ferromagnetic behavior. In contrast, one may show that for a
chain with open ends all the spin configurations are degenerate and the
system is paramagnetic.””’ This means that the tendency toward a
ferromagnetic behavior for the system with periodic boundary conditions
must be weak, since a change of the boundary conditions should not
produce a large effect.

In Section 2 we discuss the symmetries of a model of itinerant one-
dimensional electrons on a lattice with a hard-core repulsion (e.g., the
one-dimensional Hubbard model) in some detail and we show that the
partition function factorizes up to exponentially small corrections into
an electronic part and a magnetic part. The latter is that of a pure
paramagnet. This result is used to show that the difference of the
magnetization from the paramagnetic value is exponentially small,
depending on the number of clectrons. [ X(N) will be called exponentially
small if and only if § > 0 exists such that X(N)exp(5N) tends to 0 in the
limit where N tends to infinity.] In Section 3 we construct the eigenstates
of the one-dimensional Hubbard model with hard-core interactions and
we discuss the electronic properties of the system. We give an explicit
expression for the degeneracies of the ground states in the subspaces where
the z component of the total spin of the system is fixed. Further, we
calculate the thermodynamic potentials in the thermodynamic limit. The
free energy density is given by a sum of the free energy density of spinless
fermions and that of a paramagnet. The eigenstates are used in Section 4 to
derive an effective Hamiltonian for the one-dimensional Hubbard model
in the limit of strong interaction. The effective Hamiltonian is the
Hamiltonian of the Heisenberg model with antiferromagnetic couplings.
This result yields an expansion for the ground-state energy of the one-
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dimensional Hubbard model which differs from the one given in refs. 6
and 7. Our result is obtained by an ordinary perturbational treatment.
The radius of convergence of the perturbational series tends to O in the
thermodynamic limit and therefore our expansion of the ground-state
energy is only asymptotically true. Unfortunately, nothing is known about
the convergence of the series expansion for the ground-state energy given
in ref. 7 and the difference remains as an open problem. In the same way
as for the Hubbard model, an effective Hamiltonian for the one-dimen-
sional tJ-model®?) in the small-J limit may be obtained.

2. HARD-CORE INTERACTIONS, MAGNETIC PROPERTIES

The Hamiltonian of the one-dimensional (extended) Hubbard model
is given by

H= - Z tx(a.:+1aaxa+a;-ax+ln)+ Uznernx— + V({nx}) (21)

al (a,,) are the creation (annihilation) operators for electrons with spin ¢

on the site x and n,,=ala,, n.=n., +n, . They obey the usual
anticommutation relations for fermions. The model describes electrons on
a one-dimenstonal lattice with an on-site interaction and a hopping
between nearest neighbor sites. U is a positive real number, 7, are non-
vanishing real numbers. V({n.}) is a finite potential that depends on the
occupation numbers only. It may be, for example, a long-range interaction
or a single-particle potential of the form 3" v,.n, with finite real numbers v,
In the usual Hubbard model one has ¥ =0 and ¢, =>0. In the following
L denotes the number of sites, N the number of electrons. We will restrict
ourselves to the case N < L. In the case of a chain with open ends, the sum
in (2.1) goes from 1 to L —1; in the case of periodic boundary conditions
the sites are taken to be integers modulo L, so that the sum goes from 1
to L and x+ L=x. The Hamiltonian conserves the number of electrons
with spin + (—), which we denote by N, (N _). In the case of a hard-core
interaction (U = o) the Hamiltonian takes the form

Ho=Po| =3 tlaly s taia ) 4 ) |20 @2)
where P, is the projector onto the states with no doubly occupied sites,

P0=H(1—”x+nx~) (23)
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In this and in the following section we discuss the properties of the
Hamiltonian (2.2). We introduce the operators

L N x
S.n=02N)"tY ¥ exp [2m’j<a— Y ny)/N} Tens a=1,..,N

x=1 j=1 y=1
(2.4)
where
+
TxO“nx_ax+ax++ax~a!
+ +
Tl = ax+ a, + ax* ax+
X (2.5)
t,=—ilal,a, —al a.,)
+ +
r\',]"a\'fa\i_ax a\

In the subspace of no doubly occupied sites and for fixed «, the operators
S,00 Sais S,2.and S, 5 generate a u(2) algebra, ie., P[S,,, S, 1P, =0,
i=123, and PyS,;S, Po=1iP,S,,Po/2, where (i, j, k) is a cyclic per-
mutation of (1, 2, 3). In the subspace of no doubly occupied sites the ath
electron is defined by counting up the electrons from the site x = 1. Here
S,=(8,1,842,5,3) represents the spin operators of the ath electron.
They do not change the occupation numbers 7, and therefore they com-
mute with V({n,}) and with P,. Further, one obtains the commutation
relations

[S,,,,., PoY (@ 1+ a:,,am,,)Po} ~0,  i<x<L (26)

o

and

Sa,nPO Z (a;,-aaL,a' + al-:oal.a)PO

=Poz (af,a.,) POSa+l,n+POZ (af,a14) PoSa 1, (2.7)

a

If we take an open chain with Dirichlet boundary conditions, (2.6) shows
that the Hamiltonian (2.2) commutes with the operators S,,. The
Hamiltonian is invariant under the transformations generated by the
algebra [u(2)]". As a consequence, all spin configurations are degenerate
and the system behaves as a pure paramagnet. In the case of periodic
boundary conditions this is not longer true. Because of (2.7), the
Hamiltonian (2.2) commutes only with the operators of a subalgebra of
[#(2)]", namely with the operators that do not change under cyclic
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permutations of the particles. We will call this subalgebra ([#(2)]")..
The components S, S,, and S, of the total spin

S,=Y 8,1=21T., (2.8a)
S}’:ZSH,Z:zTX.Z (2.8b)
SZ=ZSG,3=Z‘EX,3 (2.8¢c)

of the system are elements of that algebra.

In the following we will discuss a system with periodic boundary
conditions. A further symmetry operator of the Hamiltonian (2.2) is the
operator that performs the cyclic permutation of the spins. It may be
written as

C= Z Z a:w}va;;al Tt ax+NaN-1aXNUN T8y (29)
Op- 0N Xj< - < XN
Since CV=1, C has the eigenvalues C, =exp(2nir/N), r=1,.., N. It com-
mutes with S, S, and S, so that the eigenvalues of S? §,, and C may
be used to classify the eigenstates of the Hamiltonian (2.2). C commutes
with the elements of the symmetry group generated by the algebra
([#(2)]%),.. Therefore we may characterize a spin configuration of an
eigenstate of H, by its eigenvalue of C. All spin configurations with the
same eigenvalue ¢, are degenerate. Let f(N/d, N_/d) be the number of spin
configurations with a given value of S, =m= N/2 — N_ that are invariant
under cyclic permutations C*“ but not under C"'* with a p such that
dp| N (dp divides N). One has

S SN N../d)=< N ) 2.10)

dIN,N._ N_

which is the number of spin configurations for fixed m. From (2.10) one
obtains

. N/d)
N, N )= d 2.11
SNN )= ¥ (0 @11)

where u(d) is the Mobius function. (2.11) follows using formulation of the
Mobius inversion formula for functions of more than one integer (see
Appendix A). Some obvious properties of f(N, N_) are

f(N,N_ )=f(N,N—N ) (2.12a)
SN, N)=f(N,0)=6y, (2.12b)
NIf(N,N_) (2.12¢)
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To obtain a spin configuration for a given r and S.=m one has to take a
linear combination of N/d configurations that are invariant under C"
where d is a divisor of r, N, and N . The number of spin configuration for
fixed r and S, =m is therefore given by

dy,m= ). (d/N)f(N/d, N /d) (2.13)

dir NN
Some properties of dy, ,, are
An,rom=AN,r, (2.14a)
Anym <Ay rm <dnom (2.14b)

(2.14a) follows from (2.12a). The first equality in (2.14b) holds if and only
if r, N, and N are relative prime. The second equality in (2.14b) holds if
and only if r is a multiple of the greatest common divisor of N and N
Summing over r in (2.13), onc obtains

N i

Nide
Z AN m ™= Z Z Z (G/N) H(d) (N //C(IL’)

r=0 r=0 d{N.N  e|N/dN jdr

-3 v () e
= 2 (,\],V/je)zmd)

e{N,N dle

N
=<N> (2.15)

as it should be. The last step follows from (A.8).
The partition function is defined as

Z(B, h)=Tr[exp(—BH, + phS.)] (2.16)

where B = (ks T)~" is the inverse temperature and 4 is a uniform magnetic
field in the z direction. Let E, be the eigenvalues of H,. The number of
eigenstates of H, with the eigenvalues E, in the subspace of states with
eigenvalue ¢, of C and eigenvalue m of S, may be written as u,, dy,, ,, With
an integer g, , > 0. The partition function takes the form

Z(ﬁ5 h)= Z Hn,rdN,r,m CXp(—ﬁEn‘i-ma) (217)
We introduce h
Zo(B, k) =}, pn,, exp(—BE,) 2" [cosh(Bh/2)]"/N (2.18)

nr
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which will be used as an estimate for Z(p, #). To obtain an upper bound
for the partition function, we use the second relation (2.14b),

dN,r,m <dN,0.m

-3 3, Ne ") ) e

ciN N dle

_ Nle
R LT o

@(n) is the Euler totient function that is defined as the number of positive
integers not exceeding and relative prime to n (see, e.g., ref. 10, p. 826). An
upper bound for the partition function is now given by

20.0< T T o)y ) b exoL—BE, + BHN2—N YN
nr,N_ d|N,N_ -

N/d

=3 T % 0d) ()t expl~BE,+ (N2~ N_)YN

nr diN N_. =0
(2.20)
This result leads finally to

Z([i,h)gz(,(/f,h){l + Y ®(d)[2 cosh(Bhd/2)1V“[2 cosh(Bi/2)] "’}

d |
diN

(2.21)
The equality in (2.20) and (2.21) holds if and only if N= 1.

A lower bound for the partition function may be obtained from
(2.14b) as well. We have

dN,r,mZdN,l,mzf(N, N/ )/N (2.22)

Using (2.17), one may perform the same manipulations as in (2.20) to
obtain
N/id /
ZBm=Y Y, Y, u(d)( d)un.rexp[~—ﬂEn+ﬁhd(N/2d—N_)]/N
mr diN N_=0

(2.23)

which may be written in the form

20, h) > Zo(B, ) { [+ Y u(d)[2 cosh(Bhd/2)]“[2 cosh(Bh2)] *N}
dIN
d>1

(2.24)
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The equality in (2.23) and (2.24) holds if and only if N=1. These results
may be formulated as follows.

Theorem 1. The partition function of the (extended) Hubbard
model (2.2) with a hard-core repulsion and N> 1 obeys the relations

Zo(B, h) Y _(Bh) < Z(B, h) < Zo(B, h) Y . (Bh) (2.25)
with
Y.(x)=14 Y &(d)[2cosh(xd/2)]V“[2 cosh(x/2)] " (2.26a)
d>1
diN
and

Y (X)=1+ Y u(d)[2cosh(xd/2)]"[2cosh(x/2)] ¥ (2.26b)

d> N
dIN

Remarks. (i) For fixed x, Y_(x)—1 and 1-—Y_(x} become
exponentially small in the limit of large N. This shows that up to
exponentially small corrections the partition function of the one-dimen-
sional Hubbard model with hard-core interactions factorizes and the
magnetic part is that of a pure paramagnet. The factorization becomes
exact in the thermodynamic limit, where the upper and the lower bounds
tend to the same value.

(ii) In the case V=0, t,=1>0 the thermodynamic potentials may
be calculated in the thermodynamic limit using the explicit form of the
eigenenergies of the Hamiltonian, This is done in the following section.

(iii) The bounds in Theorem 1 cannot be used as good estimates in
the limit where Bh tends to infinity and N is fixed. In this limit ¥ _(Bh}=0
and Y_(Bh)=N. The reason is that no assumption about the eigenvalues
E, of the Hamiltonian was made.

From now on we let N> 1. In the same way as (2.26) was obtained,
one may derive bounds for the derivatives of Z(pB, #). One has

ot

ﬂ EEZ(B’ h)= Z un,rdN,r,mmk exp(_ﬁEn+,ma) (227)

n,r,m
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Since m* >0, we may calculate the upper and lower bounds for the right-
hand side of (2.27) for k =2/ in the same way as we have calculated the
upper and lower bounds for the partition function. One obtains

2

Zm<p

B S (ZB ) Y (BR)  (228)
dl 2[ d2/
p* hz,Z(ﬂ h)> B~ —= (Zo(B, h) Y . (Bh)) (2.28b)

If k in (2.27) is odd, one may use

d21+l

ﬂAzl 1thI+IZ(ﬁ h)

dZI N
(N>’3 o Z(B k)~ % un,,dN,,,mmZ'(Tm>exp(—ﬂE,,+ﬂhm)
: (2.29)

to calculate upper and lower bounds in this case. Since m*(N/2 —m) >0,
the derivation is the same as before. One obtains finally

2+t

/‘ . lthIfl

Z(p, h)

d2/+l

< } 2 ldh2/+1 (Z()(ﬁ’ Y<(ﬁh))

2t
+ <g> p 2'%2, Zo(p, (Y. (BR)— Y _(Bh))  (2.30a)

20+ 1

d
ﬂ - ldh21+lZ(ﬂ h)

2[+1

d
> 2{;7”‘ (ZolB, 1) Y- (BH)
+(3) 8 Sazatp 0y V) (2300
The magnetization is given by

d —In Z(B, h) (2.31)

M(B, hy=§"" 7



518 Mielke

and the expectation value of S of the system without a magnetic field may
be calculated as
d2

(8*>(B,0)=3[Z(B,0)] "'B ‘ZwZ(ﬁ,h) . (2.32)

One has the following result.

Corollary 1. The difference of the magnetization from the
paramagnetic value for a model described by the Hamiltonian (2.2} is
exponentially small. The magnetization obeys the relations

M(B, h) < Mo(B, i)+ (N/2)LY L (BR)/Y _(Bh)— Y]+ YL(BR)  (233a)

M(B. I > My(B, 1)+ (N/2)LY (Bh)/Y (Bh) - 1)1+ Y ' (Bh)  (2.33b)
where

Mo(B. hY=PB (d/dh)In Zy(B, h) = N tanh(fr/2)/2 (2.34)

is the paramagnetic value.

This follows from (2.31) and from the bounds on the partition
function (2.25) and its first derivative [i.e.,, (2.30) for /=0]. But, as in the
case of Theorem 1, this result gives no estimate for the magnetization in
the limit where Bh tends to infinity and N is fixed. For zero temperature,
the magnetization is given by the maximal value S, in the subspace
of the ground states. It is shown below that for the Hubbard model (ie.,
V=0, t,=t>0), >0, and T=0 we have M=N/2 if N is odd and
M= N/2—1if N is even, whereas the pure paramagnetic value is given by
M, = N/2 in this case.

As was mentioned in the introduction, the second theorem of
Aizenman and Lieb'® shows that the magnetization of systems described
by (2.2) with an odd number of particles exceeds the paramagnetic value.
This result follows from a certain “clique structure” of the partition
function. That structure may be obtained within our formulation as well.
Inserting (2.11), (2.13) into (2.17), one obtains

Z(B, h)= 3, D.(B)[2 cosh(Be/2)]1"" (2.35)
e|N
where
De(ﬂ)=z Ha,» exp(_BEn) Z d#(e/d)/N (236)

nr dier
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Aizenman and Lieb showed that D (f)>0 if N is odd and ¢, > 0. In this
case M(B, h)> My(B, h) follows easily. On the other hand, if N is even,
D,(f) might be negative for some e and it is not possible to obtain a bound
for M(B, h) using (2.35), (2.36).

In a similar way, using (2.28) in the case where /=1, we obtain the
following result.

Corollary 2. The expectation value of S? differs from the
paramagnetic value by exponentially small corrections. It obeys the
relations

(SH(B,0)<3N/A+[Y_(0)]'YL(0) (2.37a)
{(S?)(B,0)>3N/4+[Y.(0)] ' Y.(0) (2.37b)

The value 3N/4 is again the paramagnetic value, which may be obtained by
replacing Z with Z in (2.32).

3. HARD-CORE INTERACTIONS, ELECTRONIC PROPERTIES

From now on we discuss the properties of the usual Hubbard model,
ie, Visset to 0in (2.1) and (2.2) and ¢, = ¢ >0 independent of x. Results
for t <0 may be obtained in a similar manner.

The Hamiltonian of the one-dimensional Hubbard model us usually
diagonalized using the Bethe Ansatz. The case of hard-core interactions is
much simpler than the case of finite U. The normalized eigenstates of H,
may be written in the form

k- ky;0y--ay)

N
=L T HEN ! T exp(aiN)

j=1

X y exp(Zx kpm> al, ad. 10> (31)
< XN

X< XY e

Here the first sum runs over all N! permutations, and n,,, is the smallest
number of cyclic permutations that leave the spin configuration invariant.
It is clear that n,,|N. The spin indices are understood modulo ¥, ie.,
6;,=0,, 5. Because of the periodic boundary conditions, the wavenumbers
k must satisfy the condition

exp(ik, L + 2nir/N) =1 (3.2)
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The energy of the state (3.1) is given by

E({k,})=—2tY cosk, (3.3)

and the eigenvalue of this state with respect to C is ¢, =exp(2nir/N). One
cannot choose r arbitrarily, it has to satisfy the condition (N/n,,,}!r. In the
case N_=N or N_=0, for example, n;,, =1 and only the value r=0 is
possible. In this case the sum over j in (3.1) is a sum over equal contribu-
tions and the states (3.1) are Slater determinants of single-particle states
with momenta k,. It should be mentioned that the states (3.1) form a
complete orthonormal set of states without doubly occupied sites.

The form (3.1) of the eigenstates is similar to the usual Bethe Ansatz.
The electronic part of the wave function is the same; the spin part of (3.1)
is constructed using the symmetry described in Section 2. It should be
mentioned that these states are eigenstates of S, but not of S$2. A similar
structure for the eigenstates of H, was used by Doucot and Wen,"" using
the language of first quantization.

The ground state is obtained by the symmetric distribution of the
wave numbers around 0, ie.,

{k;}={—-m(N—1)/L,.,n(N—1)/L} (3.4)

The ground state is a state with r=0 for N odd and r= N/2 for N even.
The ground-state degeneracy is thus completely determined by the
symmetry described in Section 2. From (2.11), (2.13), and (2.19), we obtain
the following result.

Corollary 3. If N<L the ground-state degeneracy for fixed
S,=N/2— N_ is given by

Nle

dQ =dyonrn. =
N_ N,ON/2—-N_ Z \N__/e

e|N.N_.

) ®(e)/N (3.5a)
if N is odd, and
© Ne
dy’ = dN,N/2,N/2—N~ = Z Z (d/N) u(e/d) N_Je (3.5b)
e|N,N_ dle,Nj2 -
if N is even.

Remark. 1In the case where N is odd, the maximal value of S, is N/2,
whereas it is N/2— 1 if N is even. This result follows since dy o vy =1 if N
is odd and dy n/5 v;»=0 if N is even, but dy y/, o =1 if N is even.
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Only in the case of a half-filled band, ie., for N=L, does one obtain
a different result. In this case the ground-state energy given by (3.3) is zero
and does not depend on r. In fact, all the spin configurations are
degenerate in this case. Further, (3.4) shows that the ground state has zero
momentum.

It should be mentioned that the energy differences of the states with
lowest energy for a different r are of the order r*/N°L and are therefore
much smaller than the energy difference of the two lowest lying eigenvalues
for the same r, which is of the order 1/L.

The expression (3.3) for the energy of the eigenstates may be used to
calculate the thermodynamic potentials in the thermodynamic limit. The
partition function Z,(8, #), which was introduced in (2.18), may be written
as

Zulp, ) =N '[2. 00211 T Zn(5) (36)
where
Zuib= T ew {op0 S costzatn,—wya} )
We introduce
P )= T 2 (38)
which may be written as
V(B z)=T] (1 +z exp{2B1 cos[2n(n — u)/L]}) (39)

n

In the thermodynamic limit we define

p(B,z)=F " lim L' In ¥,(p, ) (3.10)

Y (B, z) may be interpreted as the grand canonical partition function of a
system of noninteracting one-dimensional spinless fermions with single-
particle energies —2¢cos{2n(n—u)/L], n=1,.., L. The function p(B, z) is
the pressure. It may be written in the form

(B, 2)=p"" jol dx In(1 +zexp{2Bt cosd[2n(x—u)1})  (3.11)

and does not depend on w. The reason is that, as mentioned above, the
energies for different r become degenerate in the thermodynamic limit. The
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free energy density is related to the pressure by a Legendre transformation
in the chemical potential p=p 'In(z) to its conjugate variable c, the
concentration of the electrons. It turns out that the free energy density of
the one-dimensional Hubbard model with hard-core interaction is in the
thermodynamic limit given by the sum of the free energy densities of a
system of noninteracting spinless fermions and a systems of noninteracting
spins, such that the densities of the spins and of the spinless fermions are
the same.

4. THE CASE OF LARGE U

The case of large but finite U may be treated perturbatively with the
hopping term of the Hamiltonian (2.1) as the perturbation. The part of H
that is proportional to U has the eigenvalues nU, n >0, with the eigen-
projectors P,. The P, project onto the subspaces with n doubly occupicd
sites. Since the eigenvalues nU are highly degenerate, one has to perform
a degenerate perturbation expansion. To first order one has to diagonalize
H, given in (2.2). Because of the symmetry described in Section 2, the
cigenstates (3.1) are highly degenerate. This degeneracy may be lifted at
least partially by the second order of the perturbational calculation. To
second order one has to calculate the matrix elements of (see, e.g., ref. 12)

P H'Py= —P,HS,HP,, (4.1
where S, is the reduced resolvent
So=Y, (Un) 'P, {4.2)
n>0

Since PoHP, =0 for n> 1, H' may easily be calculated and one obtains
H' =H{+H,
Hl( = _2(,2/U) Z Ny g

+ (tz/U) Z (a;+ laa;a’a.roax~ 1o’ + hC) (43)

x,0,0'

H£=2(t2/U) Z a:rf Irrartr’a,ma\'+la’

x, 0,0

- (IZ/U) Z (a:ﬁ- 1exx— 10 + h.C.)

hc. denotes the Hermitian conjugate of the preceding term. The de-
composition of H’ was chosen such that P,H|P, is invariant under the
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symmetries generated by ([#(2)]").. If for some reason the second parts of
H; and H; are neglected, H,+ H' is the Hamiltonian of the tJ model.®*®
The matrix elements of H' between two degenerate eigenstates of H, may
be calculated without difficulties. The details are given in Appendix B. The
result is

Sriky--kysoy-oyH |r k- ky;op- 08

= = A/ UNnyn () ’N=2 3 3 exp[2nir(j—j') N1,

) a
x (3, , —5. ,
57/'o~a.a/+a Fyhar 1T ratl Oy harTjta+l al'*"“"’/“‘)

x [ 0o (4.4)

a#Faa+l

where the coefficient /, is given by
L=L""Yy (=) Y (=)
i d P’

X [I ~COS(kPa+kPa+;)] 5xa+l,xa+| (45)

S e[ 1Ttk k)
<Xy B

xp< -

We may replace the sum over x, < --- <x, in (4.5) by a sum over
X;< -+« <xy<x;+ L. Then one may introduce y, ,=x, a=2,.,N,
yny=Xx,+ L as new summation variables. After an obvious change in the
summation over £ and P’ one obtains the same expression as in (4.5), but
with « replaced by ¢ — 1. This shows that /, does not depend on a, I,=1.
Summing (4.5) over a and diving by N, we obtain

I=L "N 'Y Y (—)" z(__)P' Z exp[iz.r/,(k,,f—k,,;[)]

aa P P Xp < e B

X [1 - COS(kPI, + kP,,')]éxa-i- Lxg

=L "N"'Y ¥ (=) Y exp [in,,(k,,—k,,ﬁ)]
a,a P X reeer XN B

x [1—costk, +k, )10, s 1xs (4.6)

The sum over x,,.., x is easily performed and one obtains

I=L7'N~'Y (cosk,—cosk,) 4.7)

a,a’

The matrix elements (4.4) may finally be written as

(@/U)<r, oy opHeglr, 0y 05 (4.8)

822/62/3-4-2
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where
Heﬂ'zlz (Sa.Sa+l-_1/4) (49)

and
lroy--on) =ni{12}Nwl ZCXP(znirj/N)|¢;+z iGN (4.10)
J

Up to a constant —IN/4, H, is the Hamiltonian of the one-dimensional
antiferromagnetic Heisenberg model with periodic boundary conditions.
The matrix elements of H,; are taken between two eigenstates of the
operator that performs a cyclic permutation of the spins. This operator
commutes with H.;. In order to obtain the cigenstates of the Hubbard
model up to second order in the perturbational treatment, we have to
diagonalize the Hamiltonian of the Heisenberg model with N spins. The
ground state is an eigenstate of S with the eigenvalue s(s + 1), where s =0
if N is even or s=1 if N is odd. This is in agreement with the theorem of
Lieb and Mattis.

It should be mentioned that the result (4.8), (4.9) was derived for a
finite system and that it may give the wrong ground-state energy in the
thermodynamic limit. Since the energy gap between the ground states for
different r is O(N ~*), the convergence radius for the perturbational series
is O(N™*) and tends to zero in the thermodynamic limit. In the
thermodynamic limit the lowest energies in the different subspaces where 7
is fixed become degenerate and it is not sufficient to calculate the matrix
elements of H' between the degenerate eigenstates of H, for fixed r.
Nevertheless, the thermodynamic limit of 7 may easily be calculated and
one obtains

I=c{1 +sin(2nc)/2nc — [sin(nc)/nc]*} (411

where c is the electron density in the thermodynamic limit. Using that the
ground-state energy per particle of the Heisenberg model is in the
thermodynamic limit given by [/4—171In2, we obtain the ground-state
energy per site of the Hubbard model

= —2tsin(nc)/n~41n 2(¢4/U) I (4.12)
This does not coincide with the result of Shiba® (see also ref. 7)
E= —2tsin(nc)/n — 4 In 2(1*/U) c*[1 —sin(2nc)/2nc] (4.13)

Equation (4.13) follows if one takes the thermodynamic limit of the nested
Bethe Ansatz equations obtained by Lieb and Wu and expands in powers
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of (1/U). This means that the thermodynamic limit is taken first, whereas
our result is obtained by first expanding and then taking the
thermodynamic limit. As was argued above, our result can be only
asymptotically true in the thermodynamic limit. Unfortunately, nothing is
known about the convergence of the 1/U expansion that yields (4.13)."
We may remark that (4.12) gives a lower value for the ground-state energy
than (4.13) if and only if ¢ is smaller than ¢y, which is the solution of the
equation tan(ncg) = 2ncy. One has ¢, = 0.371. For small ¢ the second term
in (4.12) is of the order c?, whereas the second term in (4.13) is of the
order ¢*. For ¢=1, (4.12) and (4.13) coincide.

A similar calculation may be performed for the one-dimensional
tJ-model.®®) The kinetic energy of this model, ie., the part of the
Hamiltonian that is proportional to ¢, is given by (2.2). A perturbational
treatment of the term that is proportional to J is therefore completely
analogous to the calculations above. The only difference is that 4¢%/U is
replaced by J and some of the terms in H' are neglected in the t/-model,
namely the second terms in the expressions for H{ and H; in (3.7). The
result for the rJ-model is

J{r ooy Hyyprlr, 00 0x) (4.14)
where
Hyen=1,) (8,81~ 1/4) (4.15)
and ’
I,=L7'N"'% [1-cos(k,—k,)] (4.16)

In the thermodynamic limit one obtains
1= {1 —[sin(nc)/nc]?} 4.17)

Putting ¢=1—, it may be seen that /,, differs from 7 in the order é. Such
a result was expected, since the two parts of H’ that are neglected in the
tJ-model are of the order 4.%*°

APPENDIX A
The Moébius function p(d) defined as (see, e.g., ref. 10, p. 826)
wl(d) =1 if d=1
=(—1)* if dis a product of k distinct primes (A.1)
=0 if d is divisible by a square > 1

obeys the following proposition.
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Proposition (Mobius Inversion Formula). Let f(n) and g(n)
be complex-valued arithmetic functions of a natural number. Then

f(n)=3 g(d) (A2)
din
if and only if
g(n)=73, u(d) f(n/d) (A3)
din

This is equivalent to the following proposition.
Proposition. Let f(n,,.,n,) and g(n,,.., n,) be complex-valued
arithmetic functions of m natural numbers. Then

_f(nl""s nm) = Z g(nl/d""fnm/d) (A4;

if and only if ,
gny,un,)= 3 ud) f(n/d,.. n,/d) (A5)

AT

Proof. Let n be the largest common divisor of n,,.,n, and let
n,=nm,, i=1,.,m. Then (A4) reads

f(min,...m,n)y=Y g(m n/d,., m,nd)

din
=) g(md,..,m,d) (A.6)
din
and (A.5) reads
glmyn,..,myn)= 3 w(d) f(m,n/d,., m,n/d) (A7)
din

The equivalence of (A.6) and (A.7) is a simple consequence of the
equivalence of (A.2) and (A.3). This proves the equivalence of (A.4) and
(A.5). On the other hand, the equivalence of (A.2) and (A.3) follows from
the equivalence of (A.4) and (A.5). This shows that the second proposition
is equivalent to the Mdbius inversion formula.

The Mobius function obeys

Y w(d)=34,, (A.8)

din

which follows, for instance, from (A.2), (A.3) with f(n)=1 and g(n)=4, ;.
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APPENDIX B

We calculate the matrix elements of H’ in (4.3) between different
degenerate eigenstates of H,. For the first term in H, we obtain

(r ky-ky,a) "'Uklznx"_w]lr,kn coky, GOy
X

=L "(nygyny)"*N 2Z(—)”Z(—)”'Zexp[27rir(j—j')/N]

hi’

X Z (Z 5Xa+l.xa+|) exp [izxa(kP,‘—kP;)] H éa’,+a',oj',+a,
X< - <XN d a a

(B.1)

Due to the last factor, one gets a contribution only if the two spin
configurations are the same. The second term in H) may be calculated

from

' + o+
<rakl"'kN’ UIO-NI Z Ay 1169568505 - 16

+hecirk, - ky, 0,05
=L "Mnyn, ) PN2Y (=) Y (=) X expl[2nir(j—j')/N]
P

P I

x Y exp [i S xlkp, kp;,)] L.

X|< - <Xy

x2cos(kp,+kep,, )]0 : (B.2)

ﬂ'l } ”',ﬂr v

As in (B.1), one gets a contribution only if the two spin configurations are
the same. This is due to the fact that H| has the same symmetry as H,. The
situation is different for H;. For the first term in H; one obtains

roky-ky,at-ayl Y af,.ah a0 0k ky, o gD
=L""nyn,4)"?N2Y (=) (=) Y exp[2mir(j—j')/N]
P P

A

X Z €Xp ,:izxa’(kPa'_kP;r)jl Zéxu+1,x,,“
xXp< o XN a’ a
(B.3)

x 0 . | [ )
"uu|~"j'+a5ffj+u-rf/‘+a+1 50,'+,,1,ajr“,
a' #a,a+l
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Finally, the second term of Hj may be written as

(roky kg, 08 an Y al ona,_,Ahelr ki ky, 600

=L niyn))?N2 Y (=)L (=) ¥ exp[2rir(j—j')/N]
P P’ INM
X ). exp [’Z Xolkp, ~ kp;,)] Yo, 200stkp,+kp, )
X] < e XN a’ a
X50;+n+lvUj'+a50j+a,0j'+a+1 H 6ﬂj+a'«0}+,,' (84)
a#Faa+1

Up to prefactors, we have calculated all the contributions to the matrix
elements of H’. The matrix elements of H’ are now given by (4.4). If one
takes the tJ-model, only the (B.1) and (B.3) must be taken into account
and one finds (4.15).
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